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Abstract
The critical behaviour of the coagulating systems, where the coagulation
efficiency grows with the masses of colliding particles g and l as K(g, l) = gαlα

(1/2 < α � 1) is studied. The instantaneous sink that removes the particles
with masses exceeding G is introduced which allows one to define the gel as a
deposit of particles with masses between G + 1 and 2G. This system displays
critical behaviour (the sol–gel transition) as G −→ ∞. The exact post-critical
particle mass spectrum is shown to be an algebraic function of g times a growing
exponent. All critical parameters of the systems are determined as the functions
of α including the critical times.

PACS numbers: 79.60.Bm, 42.65.Lm, 03.65.−w, 52.90.+z

Let us consider a system of N particles that move chaotically, collide, and on colliding coalesce
producing a daughter particle with the mass equal to the sum of masses of parent particles.
This process is commonly referred to as coagulation. Symbolically it can be presented as an
irreversible binary chemical reaction

(g) + (l) −→ (g + l). (1)

Here g and l are the masses of colliding particles measured in units of a monomeric mass,
i.e., the integers g and l are simply the numbers of monomers in the particles. The rate of the
process (1) K(g, l) (the coagulation kernel) is supposed to be a known homogeneous function
of its arguments, i.e., K(ag, al) = aλK(g, l).

From the first sight the coagulation process looks absolutely offenceless. It is difficult to
imagine that such simple systems are able to display something unusual. And nevertheless
they do. At λ > 1 the coagulating systems experience the sol–gel transition, i.e., they separate
into sol and gel fractions after a finite interval of time tc (see e.g., recent articles Leyvraz
(2003, 2006), Ben-Naim and Krapivsky (2005a, 2005b), Lushnikov (2006), and references
therein). The sol part is a collection of g-mers whose concentrations cg(t) are the solutions
to the kinetic equation of the process (1). Less clear is how to introduce the gel. It does not
appear in the kinetic equation explicitly and can only be detected by the behaviour of the sol
mass which begins to drop down with time after t = tc. The sol is considered to transfer a
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part of its mass to the gel whose mass begins to grow with time after t = tc, although we see
no gel in our equations. The sol part disappears either gradually or instantly. In the latter case
the sol and the gel fractions cannot coexist. Below I consider only the first scenario.

My starting point is the truncated Smoluchowski’s equation that describes the coagulating
particles whose masses are limited with a maximal (cutoff) mass G. This truncated model
describes the coagulation process in the system with a sink that instantly removes the particles
with the masses exceeding G (Lushnikov and Piskunov 1982, 1983, Lushnikov 2006). The
Smoluchowski equation for the number concentrations cg(t) of actively coagulating particles
(g � G) comprising exactly g monomers at time t looks as follows:

dcg(t)

dt
= 1

2

g−1∑
l=1

K(g − l, l)cg−l (t)cl(t) − cg(t)

G∑
l=1

K(g, l)cl(t). (2)

The first term on the right-hand side (RHS) of this equation describes the gain of g-mers due
to the reaction (g − l) + (l) −→ (g). The second term is responsible for g-mer losses due
to their sticking to all other particles. This second term contains the cutoff mass G, i.e., we
assume that all particles with masses G+1,G+2, . . . , 2G do not participate in the coagulation
process and form a passive deposit. We introduce its spectrum and denote the concentrations
of deposited particles as c+

g(t). It is clear that only the gain term contributes to the rate of
change to c+

g ,

dc+
g(t)

dt
= 1

2

G∑
l=g−G

K(g − l, l)cg−lcl . (3)

In equations (2) and (3) the dimensionless units are used, i.e., the concentrations are measured
in units of the initial particle concentration c1(0), and the unit of time is 1/K(1, 1)c1(0). The
initial condition to equation (2) is chosen in the form

cg(t = 0) = δg,1, (4)

i.e., the coagulation process starts with a set of monomers whose total mass concentration
M = 1. In equation (4) δg,l is the Kroneker delta. The coagulation kernel

K(g, l) = gαlα (5)

with λ = 2α > 1 is used below. So far only the case α = 1 is well studied, although many
interesting results for more general coagulation kernels are reported in Hendriks et al (1983).

In what follows I demonstrate how the sol–gel transition can be investigated for the
kernels given by equation (5). To this end I apply the truncated model of coagulation and a
rather artificial trick proposed in Lushnikov (1973). Although the problem cannot be resolved
entirely exactly (like in the case α = 1), a full asymptotic analysis of the post-critical stage is
possible.

Let us introduce the new variable τ and the new unknown functions νg(τ ),

τ =
∫ t

0
c1(t

′) dt ′, νg(τ ) = cg(τ )/c1(τ ). (6)

On substituting this into equation (2) yields two equations for νg(τ ) and c1(τ ):

dνg(τ )

dτ
= 1

2

g−1∑
l=1

K(g − l, l)νg−l (τ )νl(τ ) − νg(t)

G∑
l=1

[K(g, l) − K(1, l)]νl(τ ) (7)

with ν1(τ ) = 1 and νg(0) = 0 (g > 1). This equation does not contain c1(τ ). The second
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equation allows one to find c1(τ ), once νg(τ ) are known,

dc1(τ )

dτ
= −c1(τ )

G∑
l=1

K(1, l)νl(τ ). (8)

The initial condition to this equation is c1(0) = 1.
For the kernel K(g, l) = gαlα equations (7) and (8) reduce to

dνg(τ )

dτ
= 1

2

g−1∑
l=1

(g − l)αlανg−l (τ )νg(τ ) − (gα − 1)νg(τ )

G∑
l=1

lανl(τ ), (9)

dc1(τ )

dτ
= −c1(τ )

G∑
l=1

lανl(τ ). (10)

Let us try to look for the solution to equation (9) in the form

νg(τ ) = h(gα−1)(τ )rg(τ ), (11)

where the function h(τ) is introduced by the equation

dh

dτ
+

G∑
l=1

lαrlh
(lα) = κ, (12)

with κ being yet an unknown constant and h(0) = 0.
On substituting these νg(τ ) into equation (9) yields the set of differential equations for

determining rg ,

κ(gα − 1)rg + h
drg

dτ
= 1

2

g−1∑
l=1

(g − l)αlαrg−lrlh
[(g−l)α+lα−gα]. (13)

A very important identity

c1(t)/h(t) = 1/κt (14)

follows from equations (10) and (12). On combining these equations yields dτ ln(c1/h) =
−κ/h. Next, applying the definition of τ (equation (6)) leads to the closed equation for c1/h:
dt (c1/h) = −κ(c1/h)2 or c1/h = (κt)−1. Pay attention that the integration constant t0 = 0
in this equation, because c1(0) = 1 and h(0) = 0.

Now let us do the decisive step: namely, we assume that after the critical time the
functions rg(τ ) are strictly independent of τ , i.e., the term containing dτ rg can be crossed out
from equation (13). I shall justify this statement later on.

The above assumption allows us to find the coefficients rg from the recurrence,

κ(gα − 1)rgh
(gα) = 1

2

g−1∑
l=1

(g − l)αlαrg−lrlh
[(g−l)α+lα ] (15)

with r1 = 1. For determining the dependence of rg on h let us introduce r̃g = rg(1). From
equation (15) one has

κ(gα − 1)r̃g = 1

2

g−1∑
l=1

(g − l)αlαr̃g−l r̃l . (16)



F122 Fast Track Communication

Table 1. Parameter B of the post-critical particle mass spectrum, equation (29), critical time tc ,
equation (35), and the separation constant κ , equation (21).

α 0.6 0.7 0.8 0.9 1.0

B 0.745 0.586 0.493 0.436 0.399
tc 3.486 2.157 1.530 1.194 1.000
κ 3.503 3.215 3.005 2.842 2.718

Noticing that the combination sg = rgh
(gα) entering equation (15) also satisfies equation (16)

with a different first term of the sequence (s1 = h) allows us to derive the explicit dependence
of rg on h,

rg(h) = r̃gh
(g−gα). (17)

Let us return to the separation constant κ and then determine the asymptotic behaviour of
r̃g at large g. To this end we introduce two generating functions D0(z) and Dα(z), where

Dσ(z) =
∞∑

g=1

gσ zgr̃g (18)

(pay attention that here the summation goes up to ∞). From equation (16) one finds

2κ[Dα(z) − D0(z)] = D2
α(z). (19)

On solving this equation with respect to Dα yields

Dα(z) = κ −
√

κ2 − 2κD0(z). (20)

The separation constant is chosen as

κ = 2D0(1) = Dα(1). (21)

This choice locates the singularity of both generating functions at z = 1 and removes thus the
exponential factors from r̃g .

Equation (20) was analysed in Hendriks et al (1983). The result is convenient to present
in terms of Dσ(1):

r̃g ≈ κ

√
D1(1)

2πDα(1)
g−(α+3/2). (22)

This expression is found by expanding D0(z) with respect to z − 1, using the Stirling formula
for the expansion coefficients of the function

√
1 − z, and the obvious formula D′

0(1) = D1(1).
Here prime stands for the differentiation with respect to z. The values of Dα(1) and D1(1)

can be determined from a numerical analysis of equation (16) (see table 1).
Now we are ready to analyse the solution of equation (12). Since κ = Dα(1) = ∑∞

l=1 lαr̃l

(equation (21)), we can rewrite equation (12) in the form

dh

dτ
+

G∑
l=1

lαr̃l(h
l − 1) =

∞∑
l=G+1

lαr̃l . (23)

First we put G = ∞. Then the solution to equation (23) can be expressed in terms of D0(h),∫ h

0

dh′

Dα(1) − Dα(h′)
= τ. (24)

The integral on the left-hand side of this equation converges at h′ = 1 which means that
h(τ) reaches unity during a finite interval of τ = τc. According to equations (6) and (14)
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τ(t) −→ ∞ as t −→ ∞, so the function h(τ) = 1 and the particle mass spectrum remain
algebraic after the sol–gel transition. Hence, the condition

h(τc) = 1 (25)

defines the critical value of τ . At finite G the situation is similar. The function h(τ), grows
with τ , reaches the value h = 1 and then exceeds unity by a little becoming independent of
τ . Let us try to find the limiting value of h in the form h(τ) = exp(ξ/G). We substitute this
h into equation (23) and replace the sums with the integrals. After some simple algebra we
obtain the condition for determining ξ∫ 1

0
x−3/2 [exp(ξx) − 1] dx = 2. (26)

Remarkably, that ξ = 0.854 is independent of α.
In the post-critical period h = exp(ξ/G) which gives us the grounds to assume that

rg are independent of τ in the post-critical period. Indeed, rg(τ ) = rg(h(τ )), because
drg/dτ = (drg/dh)(dh/dτ) and dh/dτ is a function of h (see equation (12)). Hence, the
spectrum has the form

cg(t) = 1

t

√
D1(1)

2πDα(1)
g−(3+λ)/2 exp[ξ(g/G)]. (27)

In order to understand what is going on in such systems in the post-critical period we
calculate the rate of the sol mass transfer through the cutoff mass G,

dMsol

dt
= −1

2

∑
l,m

(l + m)K(l,m)clcm, (28)

where Msol(t) = ∑G
l=1 lcl(t) and the summation on the right-hand side of equation (28) goes

over all integers l, m obeying the conditions: l, m � G and l + m > G. On replacing the sum
in this expression with the integral and keeping in mind the asymptotic structure of cg(t) in
the post-critical period,

cg = G−γ Bt−1c(x), (29)

where B = √
D1(1)/(2πDα(1)), x = g/G and c(x) = x−γ eξx , we find

dMsol

dt
= −1

2
(B/t)2G3+λ−2γ

∫ 1

0
dx

∫ 1

1−x

dy(x + y)K(x, y)c(x)c(y). (30)

One immediately sees that the rate of mass transport through the cutoff mass is independent of
G for any homogeneous kernels if γ = (3 + λ)/2 and the integrals on the RHS of this equation
converge.

The truncated model permits for calculating the spectrum of the deposit. This spectrum
stretches from g = G to g = 2G (see equation (3)). At large masses the sum on the RHS of
this equation can be converted to the integral. On doing this we get

c+
g(t) = B2

2G2

(
1

tc
− 1

t

)
F(s), (31)

where

F(s) = eξ(1+s)

∫ 1

s

dy

(1 + s − y)3/2y3/2
= 4 eξ(1+s)(1 − s)

(1 + s)2
√

s
. (32)

Here s = (g − G)/G.
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Figure 1. Universal mass spectrum of the gel. As is seen from equation (31) after the critical time
the gel forms. Its shape does not change with time (it is given by the function F(s), s = g/G− 1).
This function is shown in this figure.

At α = 1 (see Lushnikov (2006))

c+
g(∞) = exp[ξ(1 + s)]

πG2

1 − s

(1 + s)2
√

s
= 1

4π
F(s). (33)

Since
∫ 2G

G
gc+

g(∞) = 1 we can conclude from equation (33)) that∫ 1

0
(1 + s)F (s) ds = 4π. (34)

As t −→ ∞ all sol particles convert to gel whose total mass becomes equal to unity.
Then tc can be determined from the condition

∫ 2G

G
c+
g(∞)g dg = 1 or (see equation (31) and

(34))

tc = B2

2

∫ 1

0
(1 + s)F (s) ds = 2πB2 = D1(1)

Dα(1)
. (35)

The last equality follows from the definition of B (see equation (29)).
The main result of this study is the expression for the exact post-critical particle mass

spectrum equation (27). This spectrum contains the algebraic function g−(3/2+α) accompanied
with the growing exponent of the particle mass exp(ξg/G). This exact post-critical solution
of the Smoluchowski equation becomes possible, because the structure of the post-critical
spectrum is much simpler than that at the pre-critical stage. We see that the time dependence
is separated and is given by the t−1 multiplier. This is a consequence of the structure of the
coagulation kernel.

Another important result is the spectrum of the deposit. It is universal (its functional form
is independent of α (see figure 1)) as well as the rate of the mass transfer through the cutoff
mass G. This rate is independent of G. This fact was known to the authors of van Dongen
and Ernst (1986), Leyvraz 2006, but their expression for dMsol/dt differs from equation (30)
in two respects; it contains the integration over the interval (1,∞), whereas equation (30)
assumes the integration from 1 to 2. Next, equation (29) contains the growing exponent which
does not disappear even as G −→ ∞.
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Figure 2. Gelling (1) and non-gelling (2) systems. Shown is the sol mass concentration Msol(t)

versus time. In the gelling system M(t) is conserved until t = tc , then a sharp transition to the
gelation stage occurs during a very short transient time (of order G−α+1/2) and then the deposit
(gel) forms. In non-gelling system the transient time is long (it contains a positive power of G).

The above consideration applies the model that sacrifices the mass conservation from the
very beginning. In gelling and non-gelling system the coagulation process eventually results
in the formation of the deposit. Moreover, neither a phase transition is expected in the system
whose dynamics is described by a finite set of ordinary differential equations. So the question
comes up how to reconcile this statement with the results of this communication? Figure 2
explains the difference between gelling and non-gelling systems. In the gelling systems the sol
mass concentration is almost conserved (1 − Msol ∝ G−(α−1/2)) until the transition time, then
during a short transient time the deposit begins to form and the post-critical regime ensues. In
the non-gelling systems the transient time is long and we observe a smooth deposition of the
particles from the sol fraction.
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